Counting dihedral and quaternionic extensions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting Dihedral and Quaternionic Extensions

We give asymptotic formulas for the number of biquadratic extensions of Q that admit a quadratic extension which is a Galois extension of Q with a prescribed Galois group, for example, with a Galois group isomorphic to the quaternionic group. Our approach is based on a combination of the theory of quadratic equations with some analytic tools such as the Siegel–Walfisz theorem and the double osc...

متن کامل

Multiple Holomorphs of Dihedral and Quaternionic Groups

The holomorph of a group G is NormB(λ(G)), the normalizer of the left regular representation λ(G) in its group of permutations B = Perm(G). The multiple holomorph of G is the normalizer of the holomorph in B. The multiple holomorph and its quotient by the holomorph encodes a great deal of information about the holomorph itself and about the group λ(G) and its conjugates within the holomorph. We...

متن کامل

Class Groups of Dihedral Extensions

Let L/F be a dihedral extension of degree 2p, where p is an odd prime. Let K/F and k/F be subextensions of L/F with degrees p and 2, respectively. Then we will study relations between the p-ranks of the class groups Cl(K) and Cl(k). 1. A Short History of Reflection Theorems Results comparing the p-rank of class groups of different number fields (often based on the interplay between Kummer theor...

متن کامل

Generic Polynomials for Quasi-dihedral, Dihedral and Modular Extensions of Order 16

We describe Galois extensions where the Galois group is the quasidihedral, dihedral or modular group of order 16, and use this description to produce generic polynomials.

متن کامل

Dihedral and cyclic extensions with large class numbers

This paper is a continuation of [2]. We construct unconditionally several families of number fields with large class numbers. They are number fields whose Galois closures have as the Galois groups, dihedral groups Dn, n = 3, 4, 5, and cyclic groups Cn, n = 4, 5, 6. We first construct families of number fields with small regulators, and by using the strong Artin conjecture and applying some modi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2011

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-2011-05233-5